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Abstract The tetrahedron, fundamental in organic chemistry, is examined in view
of two important kinds of angles: to each tetrahedron edge belongs a dihedral angle
(internal intersection angle between two faces having the edge as common side) and to
each tetrahedron vertex a solid angle (area of the surface inside the tetrahedron on the
unit sphere with the vertex as center). Based on preliminary lemmas, these angles are
expressed in terms of edge lengths by an essential use of determinants. The resulting
formulae enable to specify angle properties by edge lengths, especially with regard
to equality and inequality of single solid angles or certain sums of dihedral angles.
A special kind of equal solid angles leads to symmetry aspects. Finally, it is shown that
by a particular rearrangement of edges in tetrahedra of a specific class some derived
angle properties will be preserved.
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1 Introduction

We refer to a tetrahedron T as shown in Fig. 1 with the 4 vertices vi and the 6 edges
viv j ; for symmetry reasons it is viv j = v jvi (1 ≤ i, j ≤ 4 with i �= j). If i and j
are two of the four vertex indices, the remaining two will always be named k and l
(k �= l). To simplify the language, we use the notation ei j for both the edges viv j as
well as their lengths. Edges are said to be adjacent or opposite depending on whether
they have a common vertex or not.

The dihedral and solid angles in T , the objects of our investigations, uniquely
belong to the edges ei j and vertices vi , respectively, and they are defined as follows: A
dihedral angle is the internal intersection angle of the two faces with common edge ei j ,
written as αi j . In analogy to the edges, we distinguish between adjacent and opposite
dihedral angles. For the definition of a solid angle φi one considers the three adjacent
edges ei j , eik and eil joining in vi as well as the unit sphere with vi as its center. The
solid angle is then given by the area of the spherical triangle on the unit sphere where
the vertices of the spherical triangle are the intersection points of the three edges with
the sphere (of course, edges smaller than 1 must be extended beyond T ). When we
simply refer to angles we mean both dihedral and solid angles and it should be noted
that all angles are given in radian measure.

Aspects of these angles will be algebraically expressed in terms of edges based on
sextuples: Let S = (e12, e13, e14, e23, e24, e34) be a sextuple of positive real numbers.
If there exists a (non-degenerate) tetrahedron T such that the numbers of S are the
edges of T , being arranged as indicated in Fig. 1, we say that S determines T . Note
that the first three edges e12, e13 and e14 are adjacent, while (e12, e34), (e13, e24)

and (e14, e23) are pairs of opposite edges. Clearly, S describes a tetrahedron T up to
isometry and there are 4! ways to determine a given T by sextuples which are mutually
different if T is asymmetric.

2 Preliminary lemmas

Of course, three adjacent dihedral angles determine a solid angle. The fundamental
relationship between these angles is based on the spherical excess. It was originally
found by Hariot in 1603 (see for instance [7]). With our angle notations it can be
written as follows:

Fig. 1 Labeled tetrahedron T
with solid angles
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Fig. 2 Visualization of the
proof of Lemma 2
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Lemma 1 In a tetrahedron T ,

φi = αi j + αik + αil − π. (1)

Remark 1 A single dihedral angle in T is <π and thus, by (1), a single solid angle
becomes <2π , i.e., smaller than the expected half of the surface area of the unit sphere.

In the next two lemmas we give simple estimates of angle sums which will be used
below. They can be found in literature on tetrahedra. In contrast to triangles with angle
sum π , the sum of solid angles is not constant, but it holds:

Lemma 2 In a tetrahedron T ,

φ1 + φ2 + φ3 + φ4 < 2π. (2)

Proof In Fig. 2 the spherical triangles of the solid angles φ2, φ3 and φ4 in T are
reflected at the midpoints of the edges e12, e13 and e14, respectively. It can be seen that
the sum of the solid angles is smaller than half of the surface area of the unit sphere
with center v1, i.e., < 2π . ��

Remark 2 (a) The solid angle sum can assume all values of the interval (0, 2π), since
by moving v1 the sum continuously varies and achieves the absolute extreme
values 0 and 2π in cases of degenerate tetrahedra.

(b) From this and applying (1) to each summand of (2), it follows that the dihedral
angle sum can assume all values of (2π, 3π).

Two pairs of opposite edges (eik, e jl) and (eil , e jk) form a skew quadrangle inside
T . We denote this quadrangle by Qi j or Qkl because it is determined by the opposite
vertices vi and v j or vk and vl , respectively.

Lemma 3 For a quadrangle Qi j in a tetrahedron T ,

αik + αil + α jl + α jk < 2π. (3)

Proof Consider to each of the four faces of T a normal vector (�= zero vector 0)
pointing towards the interior of T . These vectors are linearly dependent and thus
enable a linear combination which equals 0 as illustrated in Fig. 3 (each two successive
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Fig. 3 Skew quadrangle with
angles being the dihedral angles
of Qi j in Lemma 3

ik

il

jk jl

vectors are normal to faces which have an edge of Qi j in common). We have a new
skew quadrangle where the dihedral angles αik , αil , α jl and α jk appear. It follows that
their sum is smaller than 2π because by a rotation of one partial triangle around the
diagonal we can obtain a planar quadrangle with the larger angle sum 2π . ��

In the following, we want to take into consideration the edges of a tetrahedron.
First, it should be emphasized that a sextuple S = (e12, e13, e14, e23, e24, e34) must
meet some conditions to ensure that it determines a tetrahedron T , a circumstance
which was originally studied by Menger, Blumenthal, Herzog, Dekster, Wilker and
others and was elaborated in a survey article [11]. Without proof we mention the main
result. Calling a triple of the form (ei j , eik, e jk) with ei j < eik + e jk , eik < ei j + e jk

and e jk < ei j + eik a face triple of S (fulfilled triangle inequality for one of the four
faces of the potential T ), the result can be formulated as follows:

Lemma 4 A sextuple S = (e12, e13, e14, e23, e24, e34) determines a tetrahedron T
exactly if two conditions are fulfilled, namely (i) S has a face triple and (ii) D > 0,
where D is the determinant of the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e2
12 e2

13 e2
14 1

e2
12 0 e2

23 e2
24 1

e2
13 e2

23 0 e2
34 1

e2
14 e2

24 e2
34 0 1

1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Remark 3 (a) The two conditions (i) and (ii) imply that S has four face triples. This
can be proved by using (9) below.

(b) The determinant D is usually called a Cayley–Menger determinant. It shows an
immediate geometrical significance, namely

D = 288V 2, (5)

where V denotes the volume of T . To prove this formula, V has to be expressed
in terms of edges. The reader may perform this calculation which has already
been done by the painter Piero della Francesca (∼1412–1492) and later by Euler
(1758). From this formula (5) follows that the definition of D must be independent
of the choice of the 4! possible sextuples S which determine T .
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Cofactors of the matrix M in (4) will now be useful algebraic tools to examine the
angles in a tetrahedron T . Consider the first 4 rows and columns of M. For given i and
j the term e2

i j appears twice, namely in the two rows and columns i and j . Referring
to miners of submatrices obtained from M by not deleting the rows and columns i
and j , we define the following cofactors (the indices specify the preserved rows and
columns):

Di jk := (l, l)-minor of M, Di j := (−1)k+l · (k, l)-minor of M. (6)

Furthermore, we need a notation for the face areas of T :

�i jk := area of the face viv jvk . (7)

Lemma 5 The Cayley–Menger determinant D and the terms defined in (6) and (7)
show the following properties:

Di jk = −16�2
i jk, (8)

Di jk Di jl = 2e2
i j D + D2

i j , (9)

Di jk = Di jl + Dikl + D jkl + 2(Dil + D jl + Dkl). (10)

Proof It follows from the factorization of the polynomial representation of Di jk that
the first property (8) is valid:

Di jk = −(ei j + eik + e jk)(ei j + eik − e jk)(e jk + ei j − eik)(eik + e jk − ei j ).

Indeed, this term reveals that the stated formula is a consequence of Heron’s theo-
rem. Note that, due to the triangle inequality, Di jk is always negative. The properties
(9) and (10) can be verified by calculation. In a generalized form (9) appears by
Blumenthal [1]. ��
Remark 4 The cofactor Di j has no geometrical significance. We still mention the
polynomial representation of Di j which will be used below:

Di j = −e4
i j + (e2

ik + e2
il + e2

jk + e2
jl − 2e2

kl) e2
i j + (e2

ik − e2
jk)(e

2
jl − e2

il). (11)

Note that Di j = D ji . This also follows from the symmetry of the matrix M in (4).

3 Computation of angles

In this section dihedral and solid angles in a tetrahedron will be expressed by its edges.

Theorem 1 A dihedral angle αi j in a tetrahedron T is given by

cos(αi j ) = Di j√
Di jk Di jl

. (12)
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Proof The dihedral angle αi j in T equals the intermediate angle between the two
vectors −−→viv j ×−−→vivk and −−→viv j ×−→vivl perpendicular on the two faces viv jvk and viv jvl ,
respectively. In the following calculation we use Lagrange’s identity, the cosine law
as well as (8) and (11):

cos(αi j ) = (−−→viv j × −−→vivk) · (−−→viv j × −→vivl)

|−−→viv j × −−→vivk | |−−→viv j × −→vivl |
= (−−→viv j · −−→viv j ) (−−→vivk · −→vivl) − (−−→viv j · −−→vivk) (−−→viv j · −→vivl)

2�i jk 2�i jl

= e2
i j

1
2 (e2

ik + e2
il − e2

kl) − 1
2 (e2

i j + e2
ik − e2

jk)
1
2 (e2

i j + e2
il − e2

jl)

4�i jk�i jl

= −e4
i j + (e2

ik + e2
il + e2

jk + e2
jl − 2e2

kl) e2
i j + (e2

ik − e2
jk)(e

2
jl − e2

il)

4�i jk 4�i jl

= Di j√
Di jk Di jl

. ��

While the computation of dihedral angles is based on cosine, a convenient formula
for the solid angles makes use of tangent. It is here derived based on formula (12) for
dihedral angles but it could also be obtained more directly by applying a result given
by Oosterom and Strackee [8]. In the formula for solid angles appears a further term
Ni which is defined as follows:

Ni := (ei j + eik)(eik + eil)(eil + ei j ) − (ei j e
2
kl + eike2

jl + eile
2
jk). (13)

Theorem 2 A solid angle φi in a tetrahedron T is given by

tan( 1
2φi ) =

√
D/2

Ni
. (14)

Proof We first compute sin(αi j ). Since αi j < π and thus sin(αi j ) > 0, we obtain
with (12), (9) and D > 0 (Lemma 4):

sin(αi j ) =
√

1 − cos2(αil) =
√

Di jk Di jl − D2
i j√

Di jk Di jl
= ei j

√
2D√

Di jk Di jl
. (15)

Now, we essentially use (1) and repeatedly apply the addition theorem for cosine:

cos(φi ) = cos(αi j + αik + αil − π)

= cos(αi j ) sin(αik) sin(αil) + sin(αi j ) cos(αik) sin(αil) +
sin(αi j ) sin(αik) cos(αil) − cos(αi j ) cos(αik) cos(αil).
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Substituting the cosines and sines with the terms according to (12) and (15), respec-
tively, it follows after some transformations:

cos(φi ) = Di j Dik Dil − 2D (eikeil Di j + eilei j Dik + ei j eik Dil)

Di jk Di jl Dikl
. (16)

Analogously, we obtain:

sin(φi ) =
√

2D (ei j Dik Dil + eik Di j Dil + eil Di j Dik − 2ei j eikeil D)

Di jk Di jl Dikl
. (17)

In order to receive an expression in tangent, we insert the terms of (16) and (17)
in the trigonometric identity tan( 1

2φi ) = (1 − cos(φi ))/ sin(φi ). One verifies that the
resulting fraction can be written in the form

tan
( 1

2φi
) = ti D

ti
√

2D Ni
, where

ti = (ei j + e jk − eik)(ei j + e jl − eil)(eik + e jk − ei j )

(eik + ekl − eil)(eil + e jl − ei j )(eil + ekl − eik).

The stated formula (14) is obtained from reducing. ��

4 Some properties of angles

Whether two dihedral angles are equal or not can be checked by computing them
according to Theorem 1. In general, there is no other simple possibility based on
edges to decide this. In the case of solid angles the situation is different, i.e., there
exists a surprising criterion for their equality which has already been published in 2009
by Hajja [4]. Let pi and p j be the perimeters of the faces opposite the solid angles φi

and φ j , respectively, then we have:

Theorem 3 For the equality of two solid angles in a tetrahedron T ,

φi = φ j ⇔ pi = p j .

Proof From (2) follows that in the case of φi = φ j both solid angles in T must be
smaller than π and thus π

2 > φi/2 = φ j/2. Since the tangent is biunique in (0, π
2 )

and by using (14) we can write:

φi = φ j ⇔
√

D/2

Ni
=

√
D/2

N j
⇔ Ni − N j = 0.

Substituting Ni and N j with the terms according to (13) and factorizing we equiv-
alently obtain:

(eik + eil − e jk − e jl)(ei j + eik + e jk)(ei j + eil + e jl) = 0.
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Thus, this zero-equation is fulfilled exactly if the quadrangle Qi j satisfies

e jk + e jl = eik + eil . (18)

Adding ekl on both sides completes the proof. ��
Remark 5 Theorem 3 may be considered to be the ’pons asinorum’ (asses bridge)
for tetrahedra. This name was originally given to proposition 5 of Book 1 of Euclid’s
Elements which together with its converse in proposition 6 states that two angles of
a triangle are equal exactly if the opposite sides are equal. ’Pons asinorum’ has been
probably used because proposition 5 was considered to be difficult for students to
understand, the ’pons’ thus ’bridging’ the path to the more difficult propositions that
follow.

Theorem 3 reveals: Whether two solid angles in a tetrahedron are equal or not
depends, according to (18), only on four of the six edges. Consider the tetrahedron
T of Fig. 1 and assume that φ1 = φ2 which is equivalent to e23 + e24 = e13 + e14.
Varying only the ’base edge’ e12 or the opposite edge e34, the solid angles φ1 and φ2
actually change but their equality will be preserved. This is the case if, for instance,
one of the faces opposite φ1 or φ2 rotates arround e34 or one of the two other faces
arround e12.

Table 1 shows a tetrahedron with three equal solid angles which imply, by Theo-
rem 3, equal perimeters but certainly not necessarily equal areas of opposite faces. In
the example of Table 1 we additionally have: φ1 > φ2 ⇔ p1 > p2. The appropriate
general result, also mentioned in a paper from 2012 by Hajja [5], looks as follows:

Corollary 1 For the inequality of two solid angles in a tetrahedron T ,

φi > φ j ⇔ pi > p j .

Proof From (2) follows that two cases are possible: π/2 > φi/2 > φ j/2 and
π > φi/2 > π/2 > φ j/2. Since tangent is strictly monotone increasing and pos-
itive in (0, π

2 ), negative in (π
2 , π), the statement results by considering both cases of

inequalities instead of equalities in the steps of the proof of Theorem 3. Note that the
corollary can also be verified by considering continuous transformation of tetrahedron
edges and applying Theorem 3. ��

In the next theorem we present results about sums of adjacent and opposite dihedral
angles:

Table 1 Illustration of
Theorem 3 by an asymmetric
tetrahedron T determined by
S = (5, 6, 7, 10, 9, 8)

φ1 = 1.945 φ2 = 0.215 φ3 = 0.215 φ4 = 0.215

p1 = 27 p2 = 21 p3 = 21 p4 = 21

�234 = 34.197 �134 = 20.333 �124 = 17.412 �123 = 11.399
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Theorem 4 For a quadrangle Qi j in a tetrahedron T ,

αik + αil = α jk + α jl ⇔ eik + eil = e jk + e jl ,

αik + α jl = αil + α jk ⇔ eik + e jl = eil + e jk .

Proof The first equivalence is an immediate consequence of (1) (common αi j − π in
the left-hand equation omitted) and (18):

αik + αil = α jk + α jl ⇔ φi = φ j ⇔ eik + eil = e jk + e jl .

The proof of the second equivalence is more complicated because we cannot refer
to equal solid angles in T . Applying the addition theorem for cosine and using (12)
and (15) we obtain:

cos(αik + α jl) = Dik D jl − 2eike jl D√
Di jk Di jl Dikl D jkl

. (19)

From (3) follows that in our case of αik + α jl = αil + α jk both sums must be <π .
With (19) and since the cosine is biunique in (0,π ) we find:

αik + α jl = αil + α jk ⇔ Dik D jl − 2eike jl D√
Di jk Di jl Dikl D jkl

= Dil D jk − 2eile jk D√
Di jk Di jl Dikl D jkl

⇔ Dik D jl − Dil D jk + 2D (eile jk − eike jl) = 0.

By calculation one verifies a factorization of the term in this zero-equation so that
it equivalently looks as follows:

(eil + e jk − eik − e jl)(eil + e jk + eik + e jl) D = 0.

Since D > 0 this is equivalent to eik + e jl = eil + e jk . ��
As an example consider the tetrahedron in Table 2, where equalities according

to Theorem 4 and addionally corresponding inequalites are indicated. The general
statements about inequalities are as follows:

Table 2 Illustration of Theorem 4 and the subsequent Corollary 2 by an asymmetric tetrahedron T deter-
mined by S = (2, 4, 6, 3, 7, 9)

α12 = 2.111 α13 = 1.501 α14 = 0.897 α23 = 0.952 α24 = 1.446 α34 = 0.836

α13 + α14 = α23 + α24 ⇔ e13 + e14 = e23 + e24

α12 + α34 = α13 + α24 ⇔ e12 + e34 = e13 + e24

α12 + α14 > α23 + α34 ⇔ e12 + e14 < e23 + e34

α13 + α24 > α14 + α23 ⇔ e13 + e24 > e14 + e23

123



J Math Chem (2014) 52:1624–1638 1633

Corollary 2 For a quadrangle Qi j in a tetrahedron T ,

αik + αil > α jk + α jl ⇔ eik + eil < e jk + e jl ,

αik + α jl > αil + α jk ⇔ eik + e jl > eil + e jk .

Proof The first equivalence is immediately implied by (1) and Corollary 1. The second
equivalence can be verified as follows: From αik + α jl > αil + α jk and (3) we obtain
αik +α jl ∈ I where I = (αil +α jk, 2π−αil −α jk). It can easily be seen that the cosine
values of this interval I are equal and maximal at the endpoints. Thus we have: αik +
α jl > αil +α jk ⇔ cos(αik +α jl) < cos(αil +α jk). With that it remains to consider
equivalences of inequalities instead of equalities in the proof of Theorem 4. ��

Apart from the ’pons asinorum’, tetrahedra show further analogies to the triangle
geometry. For example, there is a relationship which can be considered as the law
of cosine for tetrahedra. It was already found in 1883 by Dostor [2] and can now be
proved easily.

Theorem 5 For a tetrahedron T ,

�2
i jk = �2

i jl + �2
ikl + �2

jkl

−2
(
�i jl�ikl cos(αil) + �i jl� jkl cos(α jl) + �ikl� jkl cos(αkl)

)
.

Proof An equivalent transformation of (10) leads to:

− Di jk

16
= − Di jl

16
− Dikl

16
− D jkl

16

−2

(√
Di jl Dikl

16

Dil√
Di jl Dikl

+
√

Di jl D jkl

16

D jl√
Di jl D jkl

+
√

Dikl D jkl

16

Dkl√
Dikl D jkl

)
.

With (8) and (12) we obtain the stated formula. ��

5 Angles and symmetry

Two spherical triangles which determine equal solid angles φi and φ j in a tetrahedron
are normally not isometric, but if they are, we speak of isoequal solid angles and write
φi ≡ φ j . Analogously, we write pi ≡ p j if pi and p j are the perimeters of isometric
faces. The following theorem also appears in Hajja [4], however, while his proof is
purely algebraic we will work with a geometric approach.

Theorem 6 For the isoequality of two solid angles in a tetrahedron T ,

φi ≡ φ j ⇔ pi ≡ p j .
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Proof We use a net of T , as shown in Fig. 4: The arcs (with radius 1) of the face
angles σ1, σ2, σ3 and τ1, τ2, τ3 are isometric with the sides of the original spherical
triangles determining the solid angles φi and φ j , respectively. Due to the more general
Theorem 3, it can be assumed throughout the proof condition (18).

The assumption pi ≡ p j is satisfied exactly if

(eik = e jk ∧ eil = e jl) ∨ (eik = e jl ∧ eil = e jk). (20)

Since the condition within the first bracket leads to σ1 = τ1, σ2 = τ2, σ3 = τ3 and
the one within the the second bracket to σ1 = τ1, σ2 = τ3, σ3 = τ2, we have in both
cases isometric spherical triangles, i.e., φi ≡ φ j .

Now, we prove the contrapositive of the converse: From (20) and (18) follows that
pi �≡ p j implies (eik �= e jk ∧ eil �= e jl) ∧ (eik �= e jl ∧ eil �= e jk). In order to verify
φi �≡ φ j it suffices to show that each of the two face angles σ2 and σ3 differs from
each of the two face angles τ2 and τ3: Since (eik �= e jk ∧ eil �= e jl) we have σ2 �= τ2
and σ3 �= τ3. Further, assume σ2 = τ3 or σ3 = τ2; it would then follow from (18) that
the bold quadrangle in Fig. 4 is a parallelogram, contrary to (eik �= e jl ∧ eil �= e jk).��

Of course, isoequal solid angles are neccessary for the symmetry of a tetrahedron
T but they are also sufficent. From the proof of Theorem 6 follows that φi ≡ φ j

exactly if condition (20) is fulfilled and we have the following: Fig. 5a shows that
(eik = e jk ∧ eil = e jl) of (20) is equivalent to the existence of a mirror reflection
(improper) symmetry with φi ≡ φ j and Fig. 5b that (eik = e jl ∧ eil = e jk) of (20) is
equivalent to the existence of a twofold rotation (proper) symmetry even with φi ≡ φ j

and φk ≡ φl . We summarize:

Fig. 4 Net of T as basis of the
proof of Theorem 6
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Fig. 5 Symmetric tetrahedra, in a with mirror and in b with twofold rotational symmetry
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Corollary 3 A tetrahedron T is symmetric exactly if it has (at least) two isoequal
solid angles. A symmetric T has always as symmetry a mirror reflection or a twofold
rotation.

Remark 6 (a) The symmetries mirror reflection and twofold rotation generate, apart
from the identity, possible further symmetries which are threefold rotations and
fourfold rotation reflections.

(b) An achiral tetrahedron is always mirror-symmetric and a chiral tetrahedron has at
most twofold rotation symmetries (since compositions of them are again twofold
rotations). Of course, both would not necessarily be the case with any point sets.

(c) A necessary and sufficient condition for symmetry is not only given by isoequal
solid angles but also by dihedral angles because,

(20) ⇔ (αik = α jk ∧ αil = α jl) ∨ (αik = α jl ∧ αil = α jk).

The implication ⇒ is evident due to the symmetries according to Fig. 5. The
converse ⇐ can be algebraically proved with help of Theorem 4. But it follows
geometrically based on the fact that three adjacent angles uniquely determine the
spherical triangle of a solid angle.

(d) It can easily be verified that two pairs of equal are two pairs of isoequal solid
angles and thus yielding twofold rotational symmetry.

6 Angles in opposed tetrahedra

By rearranging the edges of a given tetrahedron T we can often obtain new anisometric
tetrahedra. Usually, these tetrahedra have angle properties which are different from
angle properties of T . But there is a class of tetrahedra which preserves some angle
properties when the edges of T are rearranged in a particular way.

Consider to T a tetrahedron T ′ as shown in Fig. 6 where

e′
i j := ekl for all 1 ≤ i < j ≤ 4. (21)

According to this definition, T ′ coincides with T in the opposite edges. One verifies:
There is no further tetrahedron (i.e., anisometric to T and T ′) which has this property
since, colloquially speaking, already one single ’exchange’ of opposite edges in one
of the tetrahedra T or T ′ leads to the other (an ’exchange’ of the edges e12 and e34,
for instance, instead of three ’exchanges’ as it is implied by Fig. 6). It follows that T
and T ′ are isometric to each other if (at least) two opposite edges are equal.

In the case where any two opposite edges are unequal, T and T ′ are anisometric and
we speak of opposed tetrahedra. These can be subdivided into two classes: Class A
contains all tetrahedra where the three smallest of opposite edges are adjacent and class
A′ all tetrahedra where this is true for the three largest edges. Of course, Theorem 3
implies that tetrahedra of class A have exactly one largest and those of class A′ exactly
one smallest solid angle.
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Fig. 6 Tetrahedra T and T ′ coinciding in the opposite edges

Tetrahedra of class A and rearrangment of edges which leads to opposed tetrahedra,
i.e., tetrahedra of class A′, is what now will be focused on. As a property of A, which
can also be found in another context by Herzog [6], we have:

Theorem 7 To any tetrahedron T ∈ A there exists an opposed tetrahedron T ′ ∈ A′.

Proof We use Lemma 4. Without loss of generality we can assume that T is determined
by S = (e12, e13, e14, e23, e24, e34) satisfying the A-class inequalities e12 < e34,
e13 < e24 and e14 < e23. It is to show that S′ = (e34, e24, e23, e14, e13, e12) determines
T ′. First, we verify condition (i) of Lemma 4: Regarding three inequalities which are
satisfied in T and applying the A-class inequalities we obtain

e34 < e13 + e14 ∧ e24 < e12 + e14 ∧ e23 < e12 + e13

⇒ e12 < e13 + e14 ∧ e13 < e12 + e14 ∧ e14 < e12 + e13,

so that S′ has the face triple (e12, e13, e23). Now, we verify condition (ii): Computing
the difference of the Cayley–Menger determinants associated with S and S′ and again
using the A-class inequalities yields

D′ − D = 2(e2
34 − e2

12)(e
2
24 − e2

13)(e
2
23 − e2

14) > 0,

and since D > 0 it follows D′ > 0. ��
Remark 7 (a) To a tetrahedron T ′ ∈ A′ there must not necessarily exist an opposed

tetrahedron T ∈ A. As a counterexample we mention the right tetrahedron T ′
determined by the sextuple (2, 2, 2, 1, 1, 1).

(b) By the way, since D′ − D > 0 it follows from (5) for the appropriate volumes
V < V ′ which confirms that T and T ′ are anisometric.

Referring to Fig. 6, we assume that T ∈ A and define a bijection which assigns to
each angle in T an angle in the opposed T ′:

φi �→ φ′
i ∧ αi j �→ α′

i j . (22)

The following theorem shows which angle properties of T become properties of
the assigned angles in T ′, and conversely.
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Table 3 Illustration of Theorem 8: (a) relations between the solid angles of the Cs-symmetric tetrahedron
T determined by S = (3, 4, 4, 6, 6, 5) and the opposed T ′, (b) relations between the sums of opposite
dihedral angles of the asymmetric tetrahedron T determined by S = (5, 4, 3, 7, 6, 6) and the opposed T ′

(a)

φ1 = 2.411, p1 = 17 φ2 = 0.214, p2 = 13 φ3 = 0.214, p3 = 13 φ4 = 0.214, p4 = 13

φ′
1 = 0.181, p′

1 = 11 φ′
2 = 0.673, p′

2 = 15 φ′
3 = 0.673, p′

3 = 15 φ′
4 = 0.673, p′

4 = 15

φ1 > φ2 = φ3 ≡ φ4 ⇔ φ′
1 < φ′

2 = φ′
3 ≡ φ′

4
(b)

α12 = 2.074 α13 = 1.754 α14 = 1.834 α23 = 0.568 α24 = 0.648 α34 = 1.011

α′
12 = 1.587 α′

13 = 0.952 α′
14 = 0.764 α′

23 = 1.506 α′
24 = 1.318 α′

34 = 1.404

α12 + α34 > α13 + α24 = α14 + α23 ⇔ α′
12 + α′

34 > α′
13 + α′

24 = α′
14 + α′

23

Theorem 8 For the angles in opposed tetrahedra T and T ′,

φi > φ j ⇔ φ′
i < φ′

j , φi = φ j ⇔ φ′
i = φ′

j , φi ≡ φ j ⇔ φ′
i ≡ φ′

j ,

αik + α jl > αil + α jk ⇔ α′
ik + α′

jl > α′
il + α′

jk,

αik + α jl = αil + α jk ⇔ α′
ik + α′

jl = α′
il + α′

jk .

Proof Taking into account (21) and (22) we can conclude as follows: The equivalences
of unequal and equal solid angles in T and T ′ are implied by Corollary 1 and Theorem 3,
respectively, and by the additional fact that pi + p′

i and p j + p′
j equals the sum of

all six edges. The equivalence of isoequal solid angles holds because φi ≡ φ j ⇔
(20) ⇔ φ′

i ≡ φ′
j . Finally, the equivalences about sums of opposite dihedral angles

immediately result from Corollary 2 and Theorem 4. ��
Remark 8 (a) Expected equivalences concerning sums of adjacent angles are not

mentioned because, by (1), they directly depend on those of solid angles, and
conversely.

(b) Comparing two dihedral angles in T with the assigned two in T ′, there is no
general relation with respect to equality or inequality. To show that the equality is
not preseved, let us consider the tetrahedron T determined by S = (3, 4, 4, 6, 5, 5)

with equal adjacent dihedral angles α12 = α23 = 1.322 but unequal assigned
dihedral angles α′

12 = 0.744 and α′
23 = 1.829.

(c) The reader may wish to verify that opposed tetrahedra T and T ′ coincide in the
symmetries: They can both be asymmetric, Cs-symmetric or C3v-symmetric.

Finally, in Table 3 we present examples to Theorem 8.
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